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Abstract

We present variants of classical data compression paradigms by Ziv, Lempel, and Welch
in which the phrases used in compression are selected among suitably chosen motifs, defined
here as strings of intermittently solid and wild characters that recur more or less frequently in
the source textstring. This notion emerged primarily in the analysis of biological sequences
and molecules. Whereas the number of motifs in a sequence or family may be exponential
in the size of the input, a linear-sized basis of irredundant motifs may be defined such that
any other motif can be obtained by the union of a suitable subset from the basis. Previous
study has exposed the advantages of using irredundant motifs in lossy as well as lossless off-
line compression. In the present paper, we examine adaptations and extensions of classical
incremental ZL and ZLW paradigms. First, hybrid schemata are proposed along these lines,
in which motifs may be discovered and selected off-line, while the parse and encoding is
still conducted on-line. The performances thus obtained improve on the one hand over
previous off-line implementations of motif-based compression, and on the other, over the
traditionally best implementations of ZLW. On the basis of this, both lossy and lossless
motif-based schemata are introduced and tested that follow more closely the ZL and ZLW
paradigms.

1 Introduction

Ziv and Lempel designed a class of compression methods based on the idea of self
reference: while the textfile is scanned, substrings or phrases are identified and stored
in a dictionary, and whenever, later in the process, a phrase or concatenation of
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phrases is encountered again, this is compactly encoded by suitable pointers or indices
[8, 13, 14]. Of the existing versions of the method, we recapture below the parse known
as Ziv-Lempel-Welch, which is incarnated in the compress of UNIX.

For the encoding, the dictionary is initialized with all the characters of the alpha-
bet. At the generic iteration, we have just read a segment s of the portion of the
text still to be encoded. With o the symbol following this occurrence of s, we now
proceed as follows: If so is in the dictionary we read the next symbol, and repeat
with segment so instead of s. If, on the other hand, so is not in the dictionary, then
we append the dictionary index of s to the output file, and add so to the dictionary;
then reset s to o and resume processing from the text symbol following 0. Once s is
initialized to be the first symbol of the source text, “s belongs to the dictionary” is
established as an invariant in the above loop. Note that the resulting set of phrases
or codewords obeys the prefix closure property, in the sense that if a codeword is in
the set, then so is also every one of its prefixes.

Dictionary from original ZLW Motif and resolver dictionaries
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Figure 1: Tllustrating ZLW encoding (left) and parse (top) and one of its motif-based variants
as applied to the string abbabbaaabaababaabababbaa. A pair (i,j) in the bottom parse indicates the
i — th phrase of the dictionary, to be completed by the j — th resolver (j = 0 means no resolver).

The left part of Figure 1 illustrates this scheme. ZLW is easily implemented
in linear time using a trie data structure as the substrate [13, 14], and it requires
space linear in the number of phrases at the outset. Another remarkable property
of ZLW is that the encoding and decoding are perfectly symmetrical, in particular,
the dictionary is recovered while the decompression process runs (except for a special
case that is easily taken care of).



In a motif driven ZLW parse, dictionary entries correspond to strings written on
the alphabet X U {_}, where “_“ represents a wildcard or “don’t care“ symbol that
may take up one of several specifications. The right half and bottom parse in Figure
1, for instance, result from the variant described in Figure 3. Allowing don’t cares
leads to an increase of the average length of phrases hence to a decrease in their
number. As the tables in this paper display, savings can be dramatic for inputs such
as images and signals, in which the gaps can be filled by interpolation at the receiver
with negligible loss (cf. tables). As it turns out, however, improvements are also seen
in lossless schemata in which a dictionary of resolvers must be added to disambiguate
the don’t care in the phrases.

To enucleate a rough rule of thumb, we compare encodings under the rosiest
possible scenario, that is, we assume that allowing £ don’t care in each phrase will
reduce the total number of phrases by a factor of k. This, however, will come at
a cost of doubling the encoding of each phrase. As is known, if p is the number of
phrases produced by the standard ZLW for an input of size n, the number L of bits
in the corresponding encoding is

L = (p) log(p)

Under our assumptions, the output size would become

/ b p
L~ Q(E) log(%)

which induces a shuffle gain defined here as

L 2 . log(k)
Lk ( log(p))

which is positive for p > k. The last expression gives qualitative insight into the
gain that can be expected. In practice, it turns out that the correlations inherent to
the input do not extend indefinitely, whence the reduction in the number of phrases
tends to saturate at some small value of k. Next, we give some notions and properties
that set the framework for picking don’t cares. We refer to [4] for more formal
treatment.

A motif m in a string x is an element of ¥ or any string on X - (X U {_})* - X
together with its list of occurrences L£,, in . A motif that occurs at least k times
in x is a k-motif. Motif m is mazimal if we cannot make it more specific or longer
by adding solid characters while retaining (up to a uniform offset d, |d| > 0) L,,. A
maximal motif m is rredundant if m and L£,, cannot be deduced by the union of
a number of lists of other maximal motifs. Let now z and y be two strings with
m = |z| < |y| = n. The consensus of © and y is the string z;29...2,, on X U‘_* defined
as: z; = x; if z; = y; and z; = *_* otherwise (i = 1,2,...,m). Deleting all leading and
trailing don’t care symbols from z yields a (possibly empty) 2-motif that is called the
meet of x and y. The following property [4] supports the construction of a linear-sized
basis of irredundant motifs, where a basis is a set B of motifs capable of generating
all other 2-motifs in a string.




Theorem 1 FEvery irredundant 2-motif in s is the meet of two suffizes of s.

Incremental algorithms are available [4] that find all O(n) irredundant 2-motifs in
time O(n®). They work by iterated update of the sets B; of base motifs for the i-th
suffix of the input under unit symbol extension.

2 Combining ZLW and Greedy Strategies

In view of Theorem 1 and of the good performance of motif based off-line compression
[5], it is natural to inquire into the structure of ZL and ZLW parses which would use
these patterns in lieu of exact strings. Possible schemes along these lines include, e.g.,
adaptations of those in [9], or more radical schemes in which the innovative add-on
inherent to ZLW phrase growth is represented not by one symbol alone, but rather
by that symbol plus the longest match with the substring that follows some previous
occurrence of the phrase. In other words, the task of vocabulary build-up is assigned
to the growth of (candidate), perhaps irredundant, 2-motifs.

Before addressing these schemes, we test the power of ZLW encoding on the motifs
produced in greedy off-line schemata (cf., e.g., [3, 5, 6, 7]). The latter paradigm
consist of repeated selection of a pattern achieving the highest compression in the
source strings. This pattern is encoded and the process resumed until no pattern is
found capable of producing further compression. We refer to the quoted literature
for details. Despite the apparent superiority of such greedy off-line approaches in
capturing long range repetitions, one drawback is in the encoding of references, which
are bi-directional and thus inherently more expensive than those in ZLW. Our exercise
consists thus of using the motifs selected in the greedy off-line to set up an initial
vocabulary of motif phrases, but then encode these and their outgrowth while we
carry out a parse of the source string similar to that of ZLW. Assuming that we have
already selected the motifs to be used, this adaptation of ZLW to motifs requires to
address primarily the following problems:

1. We need to modify the parsing in such a way that for every chosen motif, every
one of its occurrences is used in the parsing.

2. We need to modify the dictionary in order to accommodate motifs in addition
to strings. This is to be done while retaining prefiz closure.

To ensure that a motif is correctly detected and deployed in the parsing, it has
to be stored in the dictionary before its first occurrence is detected. This requires
building a small dictionary that needs to be sent over to the decoder together with
the encoded string. In order to enforce the prefix closure, all prefixes of a motif are
inserted in the dictionary together with that motif.

With the dictionary in place, the parse phase of the algorithm proceeds in much
the same way as in the original scheme, with the proviso that once a motif is chosen,
then all of its occurrences are to be deployed. For this, the algorithm looks at each
stage for the longest substring in the tree that does not interfere with the next motif
occurrence already allocated from previous stages. The motif chosen in this way



is then concatenated with the symbol following it and the result is inserted in the
dictionary. In order to avoid the insertion of undesired don’t cares in text regions not
encoded by motifs, that symbol is treated as mismatching all other characters at this
stage of the search.

Decoding is easier. The recovery follows closely the standard ZLW, except for
initialization of the dictionary. The only difference is thus that now the decoder re-
ceives, as part of the encoding, also an initial dictionary containing all motifs utilized,
which are used to initialize the trie.

The tables below summarize results obtained on gray-scale images (Table 1, 1 pixel
= 1 byte), the Calgary Corpus (Table 2), and genetic data (Table 3). For each case,
the compression is reported first for lossy encoding with various don’t care densities,
then also for the respective lossless completions.

[

source orig gzip lossy | gzip % | % loss % | lossless gzip | */
file len size size % diff size %diff | car

camera | 66.336 | 48.750 | 34.321 | -29.60% 0.00% | 34.321 | -29.60% | 1/6
34.321 | -29.60% 0.06% | 34.321 | -29.60% | 1/5
32.887 | -32.54% 6.16% | 35.179 | -27.84% | 1/4
bridge | 66.336 | 61.657 | 38.562 | -37.46% 0.29% | 38.715 | -37.21% | 1/4
38.366 | -37.78% 5.35% | 42.288 | -31.41% | 1/3
lena | 262.944 | 234.543 | 120.308 | -48.71% 1.36% | 123.278 | -47.44% | 1/4
123.182 | -47.48% 7.32% | 135.306 | -42.31% | 1/3
peppers | 262.944 | 232.334 | 117.958 | -49.23% 1.75% | 121.398 | -47.75% | 1/4
119.257 | -48.67% 4.45% | 129.012 | -44.47% | 1/3

Table 1: Lossy/Lossless compression of gray-scale images. Loss is computed as the number of
forfeited pixels as a percentage of the total.

3 Motif-driven ZLW

In so far as we start with a set of irredundant motifs already given, the approach de-
scribed so far can be regarded as an “external dictionary” scheme. It departs from a
traditional such scheme in at least two respects: (1) the dictionary also grows during
the parse, and (2) we make no attempt at optimizing the parse in the conventional
sense. We examine next adaptations of the two main paradigms of Ziv-Lempel com-
pression, respectively known as ZL77 and ZL78 [13, 14]. For the second one, we
consider its subsequent implementation by Welch [12]. Both variants will have lossy
and lossless versions, which should be dealt with separately.

At the generic step, ZL77 has parsed and encoded the first  — 1 symbols of the
source = and looks for the longest prefix of the remaining suffix that matches some
previously seen substring. With j the starting position of that substring, [ its length
and o the character immediately following it, the new phrase in the parse is encoded
as (j,1,0). In our lossy variant, we must assume that a minimum acceptable density
d of don’t care is prescribed. At the generic step, we thus look for the densest 2-motif
beginning at ¢ and at some j < ¢ and encode it by a triplet in much the same way as in



[

source orig gzip lossy | gzip % | % loss % | lossless gzip | '/
file len size size % diff size %diff | car

bib | 111.261 | 35.063 | 26.679 | -23.91% 14.11% | 34.174 | -2.54% | 1/4
26.679 | -23.91% 1411% | 34.174 | -2.54% | 1/3
geo | 102.400 | 68.493 | 30.951 | -54.81% 19.43% | 57.098 | -16.64% | 1/4
33.334 | -51.33% 20.63% | 58.038 | -15.26% | 1/3
news | 377.109 | 144.840 | 104.807 | -27.64% 11.42% | 128.429 | -11.33% | 1/4
106.483 | -26.48% 19.95% | 153.243 5.80% | 1/3
objl | 21.504 | 10.323 8.447 | -18.17% 8.38% 9.642 | -6.60% | 1/4
7.409 | -28.23% 18.03% 9.849 | -4.59% | 1/3
6.736 | -34.75% 21.61% 8.521 | -17.46% | 2/5
obj2 | 246.814 | 81.631 | 56.810 | -30.41% 12.75% | 67.857 | -16.87% | 1/3
53.094 | -34.96% 19.88% | 67.117 | -17.78% | 1/2
paperl | 53.161 | 18.577 | 16.047 | -13.62% 13.63% | 19.411 4.49% | 1/3
15.626 | -15.89% 18.22% | 19.198 3.34% | 1/2
paper2 | 82.199 | 29.753 | 23.736 | -20.22% 15.19% | 28.743 | -3.39% | 1/3
22.519 | -24.31% 36.44% | 35.390 | 18.95% | 1/2
pic | 513.216 | 56.422 | 36.491 | -35.32% 0.56% | 36.599 | -35.13% | 1/4
proge | 39.611 | 13.275 | 11.576 | -12.80% 6.88% | 12.812 | -3.49% | 1/4
11.381 | -14.27% 8.69% | 12.854 | -3.17% | 1/3
11.010 | -17.06% 24.86% | 15.246 | 14.85% | 1/2
progl | 71.646 | 16.273 | 14.828 | -8.88% 2.72% | 15.601 | -4.13% | 1/4
14.748 | -9.37% 6.99% | 16.149 | -0.76% | 1/3
14.676 | -9.81% 7.70% | 16.261 | -0.07% | 2/5
progp | 49.379 | 11.246 | 10.287 | -8.533% 3.83% | 10.879 | -3.26% | 1/4
10.265 | -8.72% 7.43% | 11.328 0.73% | 1/3
10.416 | -7.38% 712% | 11.569 287% | 2/5

Table 2: Lossy/Lossless compression of the Calgary Corpus.

the traditional ZL scheme. For the lossless variant, the threshold d might or might not
be defined, but we must encode, in addition to the triplet, the mismatching characters
and thewr positions. 1t is reasonable to anticipate that this overhead will take too high
a toll on the encoding, whence this scheme might be viable for lossy compression only.
There, don’t cares can be left unresolved or copied from an interpolated or erroneous
character.

We look next at possible adaptations of ZLW, Welch’s implementation of ZL78.
As seen, dictionary entries correspond here to strings written on the alphabet X U{_}
(the dictionary is still initialized only by characters of X, as before). To find the
next phrase in the parse, beginning, say, at position ¢ of the text, we look for a
longest phrase in the dictionary that matches the still un-parsed suffix of the source
and appearing at least twice so far (to trigger this invariant condition, it suffices to
prepend the string of symbols of ¥ to the source string x). Let s be this phrase and
h its index in the dictionary. We use the reference number A to encode the current
phrase. The next step is the augmentation of the dictionary of phrases. For this, we
look for a longest match with up to & mismatches (or within a minimum density of
d) between the suffix starting at ¢ and the one that begins at the leftmost occurrence
of s. (If this string extends beyond 7 then it is truncated at i — 1, to secure self-



[

source orig gzip | lossy | gzip % | % loss % | lossless gzip | *7/
file len size size % diff size %diff | car

Spor EarlylIl | 25.008 8.008 | 6.137 | -23.36% 16.93% 7430 | -7.22% | 1/4
6.163 | -23.04% 12.01% 7.052 | -11.94% | 1/3
Spor Earlyl | 31.039 9.862 | 7.494 | -24.01% 14.66% 8.865 | -10.11% | 1/4
7.494 | -24.01% 14.66% 8.865 | -10.11% | 1/3
Helden CGN | 32.871 | 10.379 | 7.728 | -25.54% 15.36% 9.330 | -10.11% | 1/3
Spor Middle | 54.325 | 16.395 | 11.565 | -29.46% 0.38% | 11.672 | -28.81% | 1/4
11.555 | -29.52% 0.43% | 11.703 | -28.62% | 1/3
Helden All | 112.507 | 33.829 | 25.873 | -23.52% 18.83% | 32.029 | -5.32% | 1/4
26.010 | -23.11% 18.86% | 32.182 | -4.87% | 1/3
Spor All | 222.453 | 68.136 | 48.035 | -29.50% 18.98% | 60.042 | -11.88% | 1/4
47.896 | -29.71% 19.00% | 59.955 | -12.01% | 1/3
All Up 400k | 399.615 | 115.023 | 90.120 | -21.65% 18.62% | 110.659 | -3.79% | 1/3

Table 3: Lossy/Lossless compression of genetic data (fasta).

feeding in decoding.) We may create an extension in the dictionary corresponding
to this new word, and give it a suitable index. In the lossless implementation of this
scheme, we would also have to append to this node a list of positioned characters
that distinguish, and will enable to reconstruct, the new occurrence from the old one.
Like for the LZ77 scheme, this might be bulky in general. To mitigate this problem,
a new phrase could be described by the pair of indices of two past phrases. Still, the
encoding of a single phrase doubles in format and probably in size in this way. As
seen next, a more conservative incremental variant stems from a closer adherence to
the original parse.

The generic stage of ZLW may be considered as consisting of two parts, as fol-
lows. In the first part (hereafter, seek phrase), a longest matching phrase from the
dictionary is found, and its index is appended to the output. In the second, the one-
symbol extension of the current occurrence of the phrase is added to the dictionary
for possible future reference. In our adaptation, Part 1 is identical, except that the
output now must contain both the reference to the phrase and also the characters for
its disambiguation. This is achieved through the use of two dictionaries that grow
hand-in-hand, whereby a phrase is resolved in the shuffle of a word from the main
dictionary and one from the auxiliary one. Looking for a best phrase, e.g., the one
minimizing mismatches is feasible but time consuming, hence our implementation of
seek-phrase greedily pursues matches over mismatches. If we assume ¥ U {_} to be
sorted with {_} its maximum element, then seek-phrase finds the lexicographically
least phrase occurring at the current position.

The pseudo-code of Fig.3 describes the algorithm that produces the parse of Fig.1.
At the outset, each phrase in the parse is decomposed in a pair consisting of a primary
phrase s over ¥ U {_} and an auxiliary resolver s’ over X. A suitable shuffle of s and
s' reconstructs the actual phrase over X. The information needed for the shuffle is
the set of positions of s occupied by don’t cares. However, this does not need to be
supplied explicitly. Rather, the gaps are filled with the characters from s, in exact
succession, and the mechanics of the encoding and decoding, respectively, takes care



Initializations
Initialize dictionary trie and resolver trie with the single characters from X
Initialize phrase s to first input character, resolver s’ to the empty word A
Set output << code(s), code(s') >
Body Repeat until no more input characters
o < read the next input character
if so is in the table then set s = so (seek-phrase continues)
else, if s_ is in the dictionary and s'c is in resolvers
then set s = s_, s' = s'o (seek-phrase continues)
else (the end of a stored phrase has been reached)
1- output < output- < code(s), code(s") >
2- if s’ for some o' # o is in the dictionary then
2a- add s_ to dictionary
2b- if s’ is not already in it add s'c to resolvers
else add so to dictionary

3-s+o0
end Body
Figure 2: Motif-driven ZLW
source orig zlw max | lossless | phrases lossy gzip gzip
file len phrases | d.c. | phrases | % diff size size % diff

camera | 66,336 | 31,575 | 3 | 22,145 | -29.87% | 29,620 | 48,750 | -39.24%
66,336 | 31,575 | 5 | 21,685 | -31.32% | 29,616 | 48,750 | -39.25%
66,336 | 31,575 | 20 | 21,667 | -31.38% | 29,606 | 48,750 | -39.27%
bridge | 66,336 | 39,457 | 3 | 26,095 | -33.86% | 34,166 | 61,657 | -44.59%
66,336 | 39457 | 5 | 26,094 | -33.87% | 34,166 | 61,657 | -44.59%
66,336 | 39,457 | 20 | 26,094 | -33.87% | 34,166 | 61,657 | -44.59%
lena | 262,944 | 121,054 | 20 | 84,890 | -29.87% | 117,978 | 121,054 | -49.70%
peppers | 262,944 | 117,515 | 20 | 82,994 | -29.38% | 114,010 | 117,715 | -50.93%

Table 4: Results from gray-scale images.

of consistency.

As is easy to see, each phrase is a substring of a meet although not necessarily a
maximal or irredundant motif. There are O(n?) possible such motifs, but it can be
shown that the strategy learns a sublinear subset of this set.

Note that the dictionary of phrases is a superset of the one produced by the ZLW
parse, in the sense that for each phrase in that parse there is a matching motif in
this one. That scheme may be indeed incorporated by few fixes to steps 1-2-4, but
this would lead to doubling the size of the dictionary. It is easy to further modify the
algorithm in such a way that a maximum number £ of errors is allowed in each phrase.
Correspondingly, the length of an entry in the auxiliary table becomes bounded and
may be block-encoded, which might be profitable in some cases. The last three tables
show results obtained with this method. The reduction in the number of phrases is
general and dramatic in some cases, but the toll exacted by heavier phrase encodings
tends to offset this gain in lossless encodings as implemented here.



source orig zlw max | lossless | phrases | lossy gzip gzip
file len phrases phrases | % diff size size % diff

bib | 111,261 | 26,861 25,056 | -3.37% | 29,592 | 35,063 | -15.60%
111,261 | 26,861 21,795 | -18.86% | 29,559 | 35,063 | -15.70%
geo | 102,400 | 42,839 27,708 | -35.32% | 40,432 | 68,493 | -40.97%
news | 377,109 | 90,905 78,048 | -14.14% | 99,779 | 144,640 | -31.11%
objl | 21,504 | 9,068 6,584 | -27.39% | 9,174 | 10,323 | -11.13%
21,504 | 9,068 6,596 | -27.26% | 9,154 | 10,323 | -11.32%
obj2 | 246,814 | 68,091 58,518 | -14.06% | 81,942 | 81,631 | 0.38%
paperl | 53,161 | 15,370 13,175 | -14.28% | 15,741 | 18,577 | -15.27%
53,161 | 15,370 12,689 | -17.44% | 15,696 | 18,577 | -15.51%
paper2 | 82,199 | 21,332 19,011 | -10.88% | 20,545 | 29,753 | -30.95%
82,199 | 21,332 18,089 | -15.20% | 20,935 | 29,753 | -29.64%
proge | 39,611 | 11,979 10,938 | -8.69% | 12,846 | 13,275 | -3.23%
39,611 | 11,979 9,658 | -19.38% | 12,699 | 13,275 | -4.34%
progl | 71,646 | 16,525 17,550 | 6.20% | 17,166 | 16,273 | 5.49%
71,646 | 16,525 13,926 | -15.73% | 18,047 | 16,273 | 10.90%
progp | 49,379 | 12,017 12,659 | 5.34% | 13,345 | 11,246 | 18.66%
49,379 | 12,017 10,120 | -15.79% | 13,691 | 11,246 | 21.74%

o
o

[\~ [\ [\~ [\~
owowowm.&m.&.&m.&mcﬂow.

Table 5: Results from Calgary Corpus.

4 Conclusions and Plans for Future Work

Off-line lossy and lossless motif based compression and grammatical inference for
documents of various nature has been proposed and studied previously in [5, 2]. In
this paper, we address the versatility of the basis of irredundant motifs in schemes
that emulate the classical ones by Lempel and Ziv. As is well known, that family of
constructors of information-lossless encoders rely on an incremental parse that creates
a new phrase as soon as a prefix of the still unparsed section of the string differs from
all preceding phrases. The differences among the various parses rests on the choice of
the repertoire of phrases, and this in turn depends on a subtle tradeoff between the
number of phrases and the implied size of their encoding. Incremental lossy schemata
that operate in this way were addressed in [9], along with their information-theoretic
asymptotic optimality. In our derivations, the basis of motifs can be similarly used
as an efficient lossy scheme as well as completed into lossless encodings in which
motifs offer an efficient bilateral context for prediction. Experiments conducted using
vocabularies of motifs resulting from off-line greedy strategies show that directional
pointers bring about significant savings in encoding. The final part of this paper
addresses schemata in which vocabulary build-up and parse are intertwined in much
the same way as in traditional ZLW. Their further refinement represents the most
promising focus of future work.
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